198 research outputs found

    Current challenges for preseismic electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    Get PDF
    Are there credible electromagnetic (EM) EQ precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i) are not observed at the time of EQs occurrence and during the aftershock period, (ii) are not accompanied by large precursory strain changes, (iii) are not accompanied by simultaneous geodetic or seismological precursors and (v) their traceability is considered problematic. In this work, the detected candidate EM precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. Strict criteria are established for the definition of an emerged EM anomaly as a preseismic one, while, precursory EM features, which have been considered as paradoxes, are explained. A three-stage model for EQ generation by means of preseismic fracture-induced EM emissions is proposed. The claim that the observed EM precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested

    Critical features in electromagnetic anomalies detected prior to the L'Aquila earthquake

    Full text link
    Electromagnetic (EM) emissions in a wide frequency spectrum ranging from kHz to MHz are produced by opening cracks, which can be considered as the so-called precursors of general fracture. We emphasize that the MHz radiation appears earlier than the kHz in both laboratory and geophysical scale. An important challenge in this field of research is to distinguish characteristic epochs in the evolution of precursory EM activity and identify them with the equivalent last stages in the earthquake (EQ) preparation process. Recently, we proposed the following two epochs/stages model: (i) The second epoch, which includes the finally emerged strong impulsive kHz EM emission is due to the fracture of the high strength large asperities that are distributed along the activated fault sustaining the system. (ii) The first epoch, which includes the initially emerged MHz EM radiation is thought to be due to the fracture of a highly heterogeneous system that surrounds the family of asperities. A catastrophic EQ of magnitude Mw = 6.3 occurred on 06/04/2009 in central Italy. The majority of the damage occurred in the city of L'Aquila. Clear kHz - MHz EM anomalies have been detected prior to the L'Aquila EQ. Herein, we investigate the seismogenic origin of the detected MHz anomaly. The analysis in terms of intermittent dynamics of critical fluctuations reveals that the candidate EM precursor: (i) can be described in analogy with a thermal continuous phase transition; (ii) has anti-persistent behaviour. These features suggest that the emerged candidate precursor could be triggered by microfractures in the highly disordered system that surrounded the backbone of asperities of the activated fault. We introduce a criterion for an underlying strong critical behavior.Comment: 8 pages, 6 figure

    On the puzzling feature of the silence of precursory electromagnetic emissions

    Get PDF
    It has been suggested that fracture-induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real-time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Despite fairly abundant evidence, EM precursors have not been adequately accepted as credible physical phenomena. These negative views are enhanced by the fact that certain 'puzzling features' are repetitively observed in candidate fracture-induced pre-seismic EM emissions. More precisely, EM silence in all frequency bands appears before the main seismic shock occurrence, as well as during the aftershock period. Actually, the view that 'acceptance of 'precursive' EM signals without convincing co-seismic signals should not be expected' seems to be reasonable. In this work we focus on this point. We examine whether the aforementioned features of EM silence are really puzzling ones or, instead, reflect well-documented characteristic features of the fracture process, in terms of: universal structural patterns of the fracture process, recent laboratory experiments, numerical and theoretical studies of fracture dynamics, critical phenomena, percolation theory, and micromechanics of granular materials. Our analysis shows that these features should not be considered puzzling.Comment: arXiv admin note: text overlap with arXiv:cond-mat/0603542 by other author

    The Earth as a living planet: human-type diseases in the earthquake preparation process

    Get PDF
    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injury heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study

    Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake

    Full text link
    The variation of fractal dimension and entropy during a damage evolution process, especially approaching critical failure, has been recently investigated. A sudden drop of fractal dimension has been proposed as a quantitative indicator of damage localization or a likely precursor of an impending catastrophic failure. In this contribution, electromagnetic emissions recorded prior to significant earthquake are analysed to investigate whether they also present such sudden fractal dimension and entropy drops as the main catastrophic event is approaching. The pre-earthquake electromagnetic time series analysis results reveal a good agreement to the theoretically expected ones indicating that the critical fracture is approaching

    Tsallis and Levy statistics in the preparation of an earthquake

    Get PDF
    International audiencePrecursory fracture induced electromagnetic (EM) emissions, rooted in opening cracks and ranging from MHz to kHz, with the MHz appearing earlier, are produced and detected both at laboratory and geophysical scale. Recently, we have proposed the following two epochs/stages model of EQ generation: (i) The final kHz part is triggered by the fracture of high strength and large asperities that are distributed along the activated fault and sustain the system. (ii) The initial MHz part is thought to be due to the fracture of highly heterogeneous system that surrounds the family of asperities. Interestingly, the MHz EM time-series can be described in analogy with a thermal second order phase transition. Herein we focus on the MHz pre-seismic activity, and especially on the naturally arising question: what is the physical mechanism that organizes the heterogeneous system in its critical state? Combining ideas of Levy and Tsallis statistics and criticality with features hidden in the precursory MHz time-series we argue that a Levy walk type mechanism can organize the heterogeneous system to criticality. Based on a numerically produced truncated Levy walk, we propose a way to estimate in the stage of critical fluctuations: (i) the associated Levy index-a, which describes quantitatively the underlying Levy dynamics, and (ii) the range of values where the nonextesitive Tsallis index q is restricted. We also show that the kHz EM activity could not be described by a truncated Levy mechanism. This result further indicates an abrupt sweep of the population of asperities that sustain the system

    A unified approach of catastrophic events

    Get PDF
    Although there is an accumulated charge of theoretical, computational, and numerical work, like catastrophe theory, bifurcation theory, stochastic and deterministic chaos theory, there is an important feeling that these matters do not completely cover the physics of real catastrophic events. Recent studies have suggested that a large variety of complex processes, including earthquakes, heartbeats, and neuronal dynamics, exhibits statistical similarities. Here we are studying in terms of complexity and non linear techniques whether isomorphic signatures emerged indicating the transition from the normal state to the both geological and biological shocks. In the last 15 years, the study of Complex Systems has emerged as a recognized field in its own right, although a good definition of what a complex system is, actually is eluded. A basic reason for our interest in complexity is the striking similarity in behaviour close to irreversible phase transitions among systems that are otherwise quite different in nature. It is by now recognized that the pre-seismic electromagnetic time-series contain valuable information about the earthquake preparation process, which cannot be extracted without the use of important computational power, probably in connection with computer Algebra techniques. This paper presents an analysis, the aim of which is to indicate the approach of the global instability in the pre-focal area. Non-linear characteristics are studied by applying two techniques, namely the Correlation Dimension Estimation and the Approximate Entropy. These two non-linear techniques present coherent conclusions, and could cooperate with an independent fractal spectral analysis to provide a detection concerning the emergence of the nucleation phase of the impending catastrophic event. In the context of similar mathematical background, it would be interesting to augment this description of pre-seismic electromagnetic anomalies in order to cover biological crises, namely, epileptic seizure and heart failure
    • …
    corecore